科西嘉14提示您:看后求收藏(第六章 流数术与无穷级数(6),巴塞丽莎的复国日记,科西嘉14,废文网),接着再看更方便。
请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。
切线只交曲线于一点。
两点才能确定一条直线。
然而,通过一个点,切线却只有一条。
这三句话分开来看都是完全没有问题的,可连在一起,却让艾拉感到逻辑混乱。通过一个点可以做无数条直线,然而过这个点的切线却是唯一的,这是不是有些问题?
经过一些思考后,艾拉想明白了其中的缘由:无限中的每个个体性质都有差异,而有‘切线’这个性质的只有一条。
也就是说,切线是无限之中的唯一。
可问题是,没有两个点,人们是无法做出一条确定的直线的。而若用排除法,把无穷多的可能全部排除,逆向找出其中的唯一,听起来好像也只有神明才能做到。
“我知道切线就在那里,我也能理解它的一切性质,可我却无法将它作出来?”
这让艾拉想到了这一整个自然界——人们能理解水的性质、能理解空气的性质、能理解土壤的性质,可是人们却无法创造水、创造空气、创造土壤。
这种无力感让艾拉开始觉得亚伯拉罕教会的教义是正确的——神将世界的一切安排妥当,而人只能旁观,无法模仿。
“不行,承认这一点的话,就绝对学不会毕达哥拉斯学派的魔法了!”
艾拉拍了拍自己的脸颊。虽然她现在已经是灵体的状态,但这个动作本身能让她振作一些。
“艾拉,不要害怕无限!”她这么给自己鼓着劲。“既然两点才能确定一条直线,那就找出两个点就行了嘛!”
真在直线上找两点的话,那作出的线就是割线而不是切线了。但艾拉知道,随着这两个点不断的接近,作出的割线就会不断接近于切线。
有了之前求曲线面积的经验,艾拉很快就想到了一个类似的取巧方法——让这两个点的距离无限接近、而又不等于零。这个数字必须足够小,不然做出的线就和切线有偏差;同时它也绝对不能等于零,不然就只剩一个点,无法确定直线了。
艾拉如此表述这两个点:(x,y)、(x+x,y+y),其中,x和y就表示那个无限接近于零、而又不等于零的数。只要通过这两个点算出切线的斜率,就能找到这一条切线了。
将这些数字带入y=x2这条曲线后,式子非常简单,完全不像求曲线面积时要涉及到那种一直相加到无限的无穷级数。
艾拉试着把函数改成y=x3、y=x4、y=x5,计算的难度都没有发生多大的变化。
“这也也太简单了!”
艾拉高兴地喊了起来。她想要把这个发现分享给别人,想要宰五十头牛来庆祝这个发现!。
然而,没有一个人理会艾拉。
亚伯拉罕古教会的成员已经靠着记忆把战车登天技法重新翻译了一遍。接连几天,他们都和约基别一样,将头深深埋入双膝之间,一遍又一遍地吟唱着护身的咒文,试图以此去领会神的奇迹。
这个场景艾拉似曾相识——在康斯坦丁尼耶时,每当她试图向人们阐释她对天体的新发现,那些人总会慌慌张张地低下头,用含糊不清的词句惶恐地向着神明祷告。
每当这时,艾拉都会觉得自己是异类,是一群白天鹅当中的丑小鸭。
她意兴阑珊地低下了头。看着眼前的手稿,她忽然感到有些怀疑——这些东西,是否存在任何的价值?这好像就是玩弄数字的把戏罢了,舞台上的小丑还能用自己的把戏逗得众人开心,而这个把戏却连这一点都做不到。
本章未完,点击下一页继续阅读。