肥美的韭菜提示您:看后求收藏(第四十七章 新的目标,我有科研辅助系统,肥美的韭菜,废文网),接着再看更方便。

请关闭浏览器的阅读/畅读/小说模式并且关闭广告屏蔽过滤功能,避免出现内容无法显示或者段落错乱。

之后的几天,许秋又做了两批器件,一批是重复PEN基片的,另一批是在同样实验条件下玻璃基片的。

PTB7-TH体系中,PEN基片的最高效率提高了一点点,达到了8.20%。

而玻璃基片下的标准样品,最高效率可达10.26%。

这个数值,相比于他之前在模拟实验室中得到的10.68%,稍差一些,可能是器件结构不同造成的。

PEN基片不能高温热退火,所以用的是PEDOT:PSS传输层的正常结构,而之前使用的是氧化锌传输层的倒置结构。

此外,虽然重点在于PTB7-TH体系,但是许秋也做了P3HT体系。

主要是为了让文章数据更加丰满一些,同时也说明这种柔性衬底的加工方式具有普适性。

再之后,许秋完成了各种表征测试,包括光吸收光谱、荧光光谱、CELIV测试等,还拍了一张用两只镊子弯曲PEN基片器件的照片。

在实验进行的间隙,许秋也在同步以论文的形式,写项目的结题报告。

这个时候,他前期阅读了大量的文献的优势就体现出来了,再加上他还可以随时向学姐请教。

因此论文写起来压力并不大。

正文部分,许秋先将四组器件编号,PEN基片的PTB7-TH、P3HT体系,分别为1#、3#,玻璃基片对应的体系分别为2#、4#。

然后,主要就是比较玻璃和PEN这两种基片的不同,对器件性能的影响,并分析其可能的原因。

像是光学性能,光吸收光谱和荧光光谱都是直接测有效层薄膜的,数据对两种基片的器件都是一样的。

所以不需要比较,直接将得到的图片信息转化为文字就可以了。

比如:1#、2#有效层共混薄膜的主要光吸收范围在550-750纳米,最高吸收峰位置在680纳米处,3#、4#的主要光吸收范围在300-600纳米,最高吸收峰位置在530纳米处。

荧光光谱则相对复杂一些,两种体系都需要分别测试给体、受体单独组分薄膜和共混薄膜的荧光光谱,然后计算荧光淬灭效率。

不过,同样是看图说话,也没什么难度。

而像是CELIV,则是对电池器件进行表征,那么不同样品编号的器件测试的结果就会有所不同,就需要进行比较分析。

许秋的测试结果:

1#的载流子迁移率是1.2E-4厘米平方每伏秒,2#是2.5E-4厘米平方每伏秒,显然2#更高一些,但两者在同一数量级。

因为2#对应的电池器件性能更好,就可以解释为,载流子迁移率的提高导致了器件性能的提高。

进一步,还可以继续分析下去,比如迁移率的提高会减小电荷复合情况,增大短路电流密度等等。

但如果反过来,假如他的测试结果为:

2#是1.2E-4厘米平方每伏秒,1#是2.5E-4厘米平方每伏秒。

那么就可以一笔带过,说两者载流子迁移率相差不大,在同一个数量级,或者说载流子迁移率对器件光电性能的影响不大。

…………

许秋最开始阅读文献的时候,就时常疑惑,对于同样的一个实验现象,为什么有的人说是XXX原因,有的人说是YYY原因,还有人说是XXYY原因,难道学术界里就没有一种统一的观点吗?

后来,随着文献阅读量的提升,他逐渐明白了其中的道理。

材料,或者说所有的实验学科,所有对实验结果的解释其实都是猜想,理论永远是落后于实验的。

不可能凭空创造一个完美的理论模型,如果那样的话,直接开几台超算,算出最优结果就行了。

真实情况是,研究者们需要通过不断的实验,得到大量的实验数据,然后通过这些实验数据,来建立起一套理论体系。

但即使这样建立的体系,可能还是存在很多问题,需要不断的给理论打补丁。

同时,其中还会有很多现象难以解释,这个时候,行业大佬们就会提出很多种观点。

而其他研究者们在发表论文时,也会对这些现象进行讨论,提出自己的观点。

这个过程就类似于辩论。

最终,学术界可能只剩下一种统一的观点,也可能会有多种观点并存,抑或者在将来又有新理论将之前的理论完全推翻。

…………

一周过去,许秋完成了项目结题报告。

同时,他也收到了系统提示。

本章未完,点击下一页继续阅读。

其他小说小说相关阅读More+

女子监狱的男狱警

红唇含刀

御龙剑仙

老黄

傅沉寒小说

花重

萧尘夏诗韵

傲才

奇幻穿越男主可没那么好混

黑火公爵

十万份穿越后回归

我的小泰迪